Tag Archives: CGI

Take It Away – CGI National Conference 2017

At the end of June, I attended (and presented at!) my first CGI National Conference. I also visited the Pacific Northwest for the first time in my life. Seattle was beautiful and the learning was great. I know there are folks out there who aren’t able to attend many conferences, so hearing from attendees is one way they learn from afar. So, in case you weren’t there, let me tell you what resonated with me from the conference.

DDRqxmRV0AAh3xs

One thing I especially liked about the conference was the essential questions. Speakers weren’t required to connect with them directly. Rather they were designed for participants to personally consider and reconsider as they attended keynotes and sessions:

  1. In what ways are your students allowed to bring “their whole selves” to the learning of mathematics in your classroom and school?
  2. What do you know about the cultural and lived experiences of the students in your mathematics classroom? (How can you broaden your knowledge?)
  3. How does your mathematics classroom interrupt and/or reinforce narratives of who is and who is not capable mathematically? (How could your classroom become more interruptive vs. reinforcing of these narratives?)

Not what you’d normally expect at a math conference, right? The focus on culturally responsive pedagogy was a breath of fresh air.

I also appreciated the emphasis on making connections – both in person and virtually.  A special thanks to Tracy Zager for giving folks a nudge as well as support. There were quite a few #MTBoS members in the audience, and I hope by the end of the conference that number increased.

DDRv8FNUAAACXJ2

The Opening Keynote was a panel discussion called “Talking Math With Kids.” The panel included Christopher Danielson who blogs at the aptly named talkingmathwithkids.com; Allison Hintz and Tony Smith from the University of Washington; and Megan Franke, Angela Turrou, and Nick Johnson from UCLA. They told stories of their experiences working with young children around mathematics. The (extremely important) theme of their talk is that young children have mathematical ideas. We should listen to, value, and encourage them.

Then we moved into our first of six sessions. I happened to present during the first session. It was a little stressful, especially since the projector was not cooperating at first, but I was happy to get it out of the way right up front. 🙂 My talk was called “Numberless Word Problems in the Elementary Grades.”

In the talk we solved a numberless word problem together to create a shared experience. Then I shared the story of Jessica Cheyney using numberless word problems in her classroom to help students connect the act of separating to the concept of subtraction. Next I shared the story of Casey Koester, an instructional coach who used intentional planning and numberless word problems to help 2nd grade students make better sense of word problems. I closed by sharing resources teachers can use to implement numberless word problems in their classrooms.

Since we started in the afternoon, the opening keynote and session #1 were all we did on day 1. Day 2 opened with another keynote called “Equal Math Partners: Families, Communities, and Schools.” The keynote included Erin Turner, Julie Aguirre, and Corey Drake from the TEACH Math Project; and Carolee Hurtado from the UCLA Parent Project.

I loved this keynote! We often talk about what teachers and students are doing in schools and gloss over or ignore the role parents can and should take in their children’s mathematical development. We also ignore the role that students’ family, community, and culture play in their learning of mathematics. The two projects shared in this keynote were inspiring to listen to and so important for us to hear.

The first story was about the UCLA Parent Project, a multi-year project that invites parents in to become partners in their children’s math learning. It also builds up the parents into leaders.

The second project was the TEACH Math Project. Pre-service teachers were required  to take a community walk to interview people and learn more about the community in which their students lived. We often ask teachers to create tasks and problems based around student interests, but this often leads to generic problems around what we assume the students’ interests are. In this project the pre-service teachers had to get to know their students, their lives, and their interests for real. Then they had to use what they learned to create relevant tasks and problems. I loved it.

After the keynote we attend session #2. I went to Megan Franke’s “No More Mastery: Leveraging Partial Understanding.” This resonated so much with me because it matches my current thinking about how we should be analyzing and interpreting student work.

According to Megan Franke, mastery learning “breaks subject matter and learning content into clearly specified objectives which are pursued until they are achieved. Learners work through each block of content in a series of sequential steps.” The trouble with mastery learning, however, is that actual learning isn’t that clean. Further, it sorts students into two groups – those who’ve got it and those who don’t – which contributes to inequality.

A partial understanding approach, on the other hand, looks at understanding as something we can have varying amounts of. What’s important is finding out what students’ current understanding and capabilities are and build from there. Megan shared an example of a preschool counting task where students had to count 31 pennies. According to the mastery approach – they either counted to 31 correctly or they didn’t – only 2.5% of the students demonstrated mastery of counting. However, when they scored the students on a range of numeracy criteria – knowledge of the counting sequence, 1-to-1 correspondence, cardinality, counting the whole collection, and organization – the picture changed completely. Only 12% of the students demonstrated little to no number knowledge while 64% of them demonstrated understanding of multiple criteria.

For session #3 I got to attend Christopher Danielson’s “The Power of Multiple Right Answers: Ambiguity in Math Class.”

I especially love the power of the phrase, “Well, it depends…” and hope to help teachers in my district see the power in crafting questions and tasks that lend themselves to some ambiguity. I also love this thought by Allison Hintz retweeted by Christine Newell:

Capture

If you haven’t seen Christine Newell’s Ignite Talk from NCSM 2017, “Precision Over Perfection,” check it out because it touches on this very idea.

During session #4 I went to lunch, and I’m going to skip talking about session #5 because it didn’t really resonate or push my thinking very much.

Session #6 was fantastic though! I saw Jennifer Kolb and Jennifer Lawyer’s talk “The Importance of Counting in Grades 4 & 5 to Support Complex Ideas in Mathematics.” I noticed that counting in general and counting collections specifically appeared across the conference program. I have made the counting collections routine a mainstay in my primary grade curriculum materials. I was especially intrigued to hear stories of how intermediate grade teachers are using the routine. The two Jennifers did not disappoint!

In the example above, counting groups and then groups of groups helped nudge these 5th grade students into an understanding of the Associative Property of Multiplication.

This same idea of “groups of groups” led students to explore groups of 10 in a way that led to deeper understandings of place value and helped introduce exponents:

Counting is a skill we naively think students “master” in the early grades, but taking a partial understanding perspective, we can open up the concept to see that there’s so much more to learn from counting in later elementary grades and beyond!

On day 3 of the conference we opened with another enlightening keynote “Anticipatory Thinking: Supporting Students’ Understanding of How Subtraction Works.” This keynote was led by Linda Levi from the Teachers Development Group and Virginia Bastable from Mount Holyoke College.

Linda Levi’s portion of the talk reflected on the meaning of computational fluency. She reminded us that while many people think of fluent as being fast, the definition is much broader and more nuanced than that.

“Computational fluency refers to having efficient and accurate methods for computing. Students exhibit computational fluency when they demonstrate flexibility in the computational methods they choose, understand and can explain these methods, and produce accurate answers efficiently. The computational methods that a student uses should be based on mathematical ideas that the student understands.” (Principles and Standards for School Mathematics, 2000, p. 152)

We started with a video example of a student solving 5,000 – 4,998 using the standard algorithm. Is this an example of computational fluency? According to the above definition, no, it’s not. Producing an accurate answer like a calculator is not the same as demonstrating computational fluency. In this example the student did not demonstrate flexibility in the methods he chose, he didn’t understand and couldn’t explain his method, and his method is not based on mathematical ideas that the student understands.

We then watched videos of two other students who used subtraction strategies they invented. Were these students demonstrating computational fluency? The students clearly understood their strategies and they were based on mathematical ideas the students understood. However, we then watched these same students solve another problem and realized that these students were not flexible in their thinking. They used the same strategies for subtracting even though other strategies would have been more efficient for the new problem. It’s really important to remember how multi-faceted computational fluency is and attend to all facets as we work with students.

One of Linda Levi’s main messages was that understanding how operations work is the foundation for computational fluency. She shared with us how we can use equations that represent students’ strategies as objects of reflection for discussing why a strategy works and to help make explicit important mathematical ideas.

Virginia Bastable followed up with a talk about mathematical argument which was along the same theme of helping students understand how the operations work.

One thing that resonated with me from her talk was the important work of opening up mathematics learning beyond the narrow focus of answer getting. Rather, mathematics is a landscape that also involves sense making, exploring, wondering, and even arguing.

After the keynote I attended Kendra Lomax’s session “Learning from Children’s Thinking: A CGI Approach to Formative Assessment.” This session dovetailed nicely with Megan Franke’s session on partial understandings because the whole point of the CGI assessment is to get a sense of where the child is at in a variety of ways rather than a binary “yes, they have it” or “no, they don’t.”

If you’re interested in this assessment approach, then I have good news for you! A slew of assessment resources are available at Kendra’s website, Learning From Children. Look at the resources under “Listening to Children’s Thinking” in the menu at the top of the page.

For my final two sessions I went to hear more from Linda Levi and Virginia Bastable. Linda’s talk “Understanding is Essential in Developing Computational Fluency” gave us practice recording student strategies using equations as a way to make explicit the properties and big ideas embedded within the strategies.

Virginia’s talk “Support Math Reasoning by Linking Arithmetic to Algebra” dove more deeply into the role mathematical argument can play in helping students develop a deeper understanding of the operations. When I think back to the skill-based worksheets of my youth, I’m jealous of the deep thinking elementary students are given the opportunity to do in classrooms today.

We came back together for a closing session and that was the end of the conference. Spending three days with like-minded educators who care so deeply about mathematics education and nurturing children’s mathematical ideas helped recharge my batteries before coming back to work for the 2017-18 school year. It will be another two years before the next CGI conference – this time in Minneapolis – and I can’t wait to attend!

Purposeful Numberless Word Problems

[UPDATE – You can find all of my numberless word problem sets on this page.]

This year I read Sherry Parrish’s Number Talks from cover to cover as I prepared to deliver introductory PD sessions to K-2 and 3-5 teachers in November. She outlines five key components of number talks; you can read about them here. One of the components in particular came to the forefront of my thinking the past few days: purposeful computation problems. I’ll get back to that in a moment.

It all started when I got an email the other day asking whether I have a bank of numberless word problems I could share with a teacher. Sadly, I don’t have a bank to share, but it immediately got me thinking of putting one together. That led to me wondering what such a bank would look like: How would it be organized? By grade level? By problem type? By operation?

That brought to mind a resource I used last year when developing an extended PD program for our district interventionists: the Institute of Education Sciences practice guide Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools. The guide lays out 8 recommendations. I was reminded of this one:

Recommendation 4. Interventions should include instruction on solving word problems that is based on common underlying structures.

Students who have difficulties in mathematics typically experience severe difficulties in solving word problems related to the mathematics concepts and operations they are learning. This is a major impediment for future success in any math-related discipline.

Based on the importance of building proficiency and the convergent findings from a body of high-quality research, the panel recommends that interventions include systematic explicit instruction on solving word problems, using the problems’ underlying structure. Simple problems give meaning to mathematical operations such as subtraction or multiplication. When students are taught the underlying structure of a word problem, they not only have greater success in problem solving but can also gain insight into the deeper mathematical ideas in word problems.

(You can read the full recommendation here.)

And it was this recommendation that ultimately reminded me of the part of Sherry Parrish’s book where she talked about purposeful computation problems:

“Crafting problems that guide students to focus on mathematical relationships is an essential part of number talks that is used to build mathematical understanding and knowledge…a mixture of random problems…do not lend themselves to a common strategy. [They] may be used as practice for mental computation, but [they] do not initiate a common focus for a number talk discussion.”

All of this shaped my thoughts on how I should proceed if I were to create a bank of numberless word problems to share. Don’t get me wrong, the numberless word problem routine can be used at any time with any problem as needed. However, the purpose is to provide scaffolding, and we should provide scaffolding with a clear instructional end goal in mind. We’re not building ladders to nowhere!

The end goal, as I see it, is that we’re trying to support students so they can identify for themselves the structure of the problems they’re solving so they can successfully choose the operation or operations they need to use to determine the correct answer.

In order to reach that goal, we need to be very intentional in our work, in our selection of problems to pose to students. We need to differentiate practice for solving problems from purposefully selecting problems that initiate a common focus for problem solving.

What Sherry Parrish does to achieve this goal with regards to number talks is she creates problem strings and groups them by anticipated computation strategy. I didn’t create problem strings, per se, but what I did do was create small banks of word problems that all fit into the same problem type category. I’m utilizing the problem types shared in Children’s Mathematics: Cognitively Guided Instruction.

CGI

Here’s the document the image came from. It’s a quick read if you’re new to Cognitively Guided Instruction or if you want a quick brush up.

So far I’ve put together sets of 10 problems for all of the problem types related to joining situations. I plugged in numbers for the problems, but you can just as easily change them for your students. I did try to always select numbers that were as realistic as possible for the situation.

My goal is to make problem sets for all of the CGI problem types to help get teachers started if they want to do some focused work on helping students build understanding of the underlying structure of word problems.

I created these problems using the sample contexts provided by Howard County Public Schools. They’re simple, but what I like is that they help illustrate the operations in a wide variety of contexts. Addition can be found in situations about mice, insects, the dentist, the ocean, penguins, and space, to name a few.

As you read through the problems from a given problem type, it might seem blatantly obvious how all of the problems are related, but young students don’t always attend to the same features that adults do. Without sufficient experience, they may not realize what aspects of a problem make addition the operation of choice. We need to give them repeated, intentional opportunities to look for and make use of structure (SMP7).

Even though I’m creating sets of 10 problems for each problem type, I’m not recommending that a teacher should pick a problem type and run through all 10 problems in one go. I might only do 3-4 of the problems over a few days and then switch to a new problem type and do 3-4 of that problem type for a few days.

After students have worked on at least 2 problem types, then I would stop and do an activity that checks to see if students are beginning to be able to identify and differentiate the structure of the problems. Maybe give them three problems, 2 from one problem type and 1 from another. Ask, “Which two problems are of the same type?” or “Which one doesn’t belong?” The idea being that teachers should alternate between focused work on a particular problem type and opportunities for students to consolidate their understanding among multiple problem types.

On each slide in the problem banks, I suggest questions that the teacher could ask to help students make sense of the situation and the underlying structure. The rich discussion the class is able to have with the reveal of each new slide is just as essential as the slow reveal of information.

You may not need to ask all the questions on each slide. Also, you might come up with some of your own questions based on the discussion going on in your class. Do what makes sense to you and your goals for your students. I just wanted to provide some examples in case a teacher wasn’t quite sure how to facilitate a discussion of each slide for a given problem.

Creating these problem sets has prompted me to make a page on my blog dedicated to numberless word problems. You can find that here. I’ll post new problem sets there as they’re created. My current goal is to focus on creating problem sets for all of the CGI problem types. When that is complete, then I’d like to come back and tackle multi-step problems which are really just combinations of one or more problem types. After that I might tackle problems that incorporate irrelevant information provided in the problem itself or provided in a graph or table.

I’ve got quite a lot of work cut out for me!