Category Archives: Uncategorized

Disconnect

At the end of June, I had the pleasure of spending a week learning from Kathy Richardson at the Math Perspectives Leadership Institute in Hutto, Texas. I’ve been a fan of Kathy Richardson ever since my first week on the job as elementary math curriculum coordinator in Round Rock ISD. That week I sat in on a summer PD session on early numeracy led by Mary Beth Cordon, one of our district instructional coaches. She had us read a little out of Kathy Richardson’s book How Children Learn Number Concepts: A Guide to the Critical Learning Phases. I was hooked from the little I read, so I asked if I could borrow the book.

I devoured it in a couple of days.

Since then I’ve purchased multiple copies for all 34 elementary campuses, led campus and district PD sessions on the critical learning phases, and led a book study with over a hundred math interventionists. The book is so eye opening because it makes tangible and explicit just how rigorous it is for young children to grapple with and learn counting concepts that are second nature to us as adults.

I was so excited for the opportunity to learn from Kathy Richardson in person this summer, and she didn’t disappoint. If you’d like to see what I learned from the institute, check out this collection of tweets I put together. It’s a gold mine, full of nuggets of wisdom. I’ll probably be referring back to it regularly going forward.

As happy as I am for the opportunity I had to learn with her, I also left the institute in a bit of a crisis. There is a HUGE disconnect between what her experience says students are ready to learn in grades K-2 and what our state standards expect students to learn in those grades. I’ve been trying to reconcile this disconnect ever since, and I can tell it’s not going to be easy. I wanted to share about it in this blog post, and I’ll also be thinking about it and talking to folks a lot about it throughout our next school year.

So what’s the disconnect?

Here’s a (very) basic K-2 trajectory laid out by Kathy Richardson:

  • Kindergarten
    • Throughout the year, students learn to count increasingly larger collections of objects. Students might start the year counting collections less than 10 and end the year counting collections of 30 or more.
    • Students work on learning that there are numbers within numbers. Depending on their readiness and the experiences they’re provided, they may get this insight in Kindergarten or they might not. If students don’t have this idea by the end of Kindergarten, it needs to be developed immediately in 1st grade because this is a necessary idea before students can start working on number relationships, addition, and subtraction.
  • 1st Grade
    • Students begin to develop an understanding of number relationships. After a year of work, Kathy Richardson says that typical 1st graders end the year internalizing numbers combinations for numbers up to around 6 or 7. For example, the number combinations for 6 are 1 & 5, 2 & 4, 3 & 3, 4 & 2, and 5 & 1. Students can solve addition and subtraction problems beyond this, but they will most likely be counting all or counting on to find these sums or differences rather than having internalized them.
    • Students can just begin building the idea of unitizing as they work with teen numbers. Students can begin to see teen numbers as composed of 1 group of ten and some ones, extending the idea that teen numbers are composed of 10 and some more.
  • 2nd Grade
    • Students are finally ready to learn about place value, specifically unitizing groups of ten to make 2-digit numbers. According to Kathy Richardson, she says teachers should spend as much time as possible on 2-digit place value throughout 2nd grade.
    • Students apply what they learn about place value to add and subtract 2-digit numbers. By the end of the year, students typically are at a point where they need to practice this skill – which needs to happen in 3rd grade. It is typically not mastered by the end of 2nd grade.

And here’s what’s expected by the Texas math standards:

  • Kindergarten
    • Lots of number concepts within 20. Most of these aren’t too bad. The biggest offender that Kathy Richardson doesn’t think typical Kindergarten students are ready for is K.2I compose and decompose numbers up to 10 with objects and pictures. If students don’t yet grasp that there are numbers within numbers, then they are not ready for this standard.
    • One way to tell if a student is ready is to ask them to change one number into another and see how they react. For example, put 5 cubes in front of a student and say, “Change this to 8 cubes.” If the student is able to add on more cubes to make it 8, then they demonstrate an understanding that there are numbers within numbers. If, on the other hand, the student removes all 5 cubes and counts out 8 more, or if the student just adds 8 more cubes to the pile of 5, then they do not yet see that there are numbers within numbers.
    • My biggest revelation with the Kindergarten standards is that students are going to be all over the map regarding what they’re ready to learn and what they actually learn during the year. Age is a huge factor at the primary grades. A Kindergarten student with a birthday in September is going to be in a much different place than a Kindergarten student with a birthday in May. It’s only a difference of 8 months, but when you’ve only been alive 60 months and you’re going through a period of life involving lots of growth and development, that difference matters. It makes me want to gather some data on what our Kindergarten students truly understand at the end of Kindergarten compared to what our standards expect them to learn.
  • 1st Grade
    • Our standards want students to do a lot of adding and subtracting within 20. Kathy Richardson believes this is possible. Students can get answers to addition and subtraction problems within 20, but this doesn’t tell us what they understand about number relationships. If we have students adding and subtracting before they understand that there are numbers within numbers, then it’s likely to be just a counting exercise to them. These students are not going to be anywhere near ready to develop strategies related to addition and subtraction. And then there’s that typical threshold where most 1st graders don’t internalize number combinations past 6 or 7. So despite working on combinations to 20 all year, many students aren’t even internalizing combinations for half the numbers required by the standards.
    • The bigger issue is place value. The 1st grade standards require students to learn 2-digit place value, something Kathy Richardson says students aren’t really ready for until 2nd grade. And yet our standards want students to:
      • compose and decompose numbers to 120 in more than one way as so many hundreds, so many tens, and so many ones;
      • use objects, pictures, and expanded and standard forms to represent numbers up to 120;
      • generate a number that is greater than or less than a given whole number up to 120;
      • use place value to compare whole numbers up to 120 using comparing language; and
      • order whole numbers up to 120 using place value and open number lines.
    • I’m at a loss for how to reconcile her experience that students in 1st grade are ready to start putting their toes into the water of unitizing as they work with teen numbers and our Texas standards that expect not only facility with 2-digit place value but also numbers up to 120.
  • 2nd Grade
    • And then there’s second grade where students have to do all of the same things they did in 1st grade, but now with numbers up to 1,200! Thankfully 2-digit addition and subtraction isn’t introduced until 2nd grade, which is where Kathy Richardson said students should work on it, but they also have to add and subtract 3-digit numbers according to our standards. Kathy Richardson brought up numerous times how 2nd grade is the year students are ready to begin learning about place value with 2-digit numbers, and she kept emphasizing that she felt like as much of the year as possible should be spent on 2-digit place value. If the disconnect in 1st grade was difficult to reconcile, the disconnect in 2nd grade feels downright impossible to bridge.

I’m very conflicted right now. I’ve got two very different trajectories in front of me. One is based on years upon years of experience of a woman working with actual young children and the other is based on a set of standards created by committee to create a direct path from Kindergarten to College and Career Ready. Why are they so different, especially the pacing of what students are expected to learn each year? It’s one thing to demand high expectations and it’s another to provide reasonable expectations.

And what do these different trajectories imply about what it means to learn mathematics? Kathy Richardson is all about insight and understanding. Students are not ready to see…until they are. “We’re not in control of student learning. All we can do is stimulate learning.”

Our standards on the other hand are all about getting answers and going at a pace that is likely too fast for many of our students. We end up with classrooms where many students are just imitating procedures or saying words they do not really understand. How long before these students find themselves in intervention? We blame the students (and they likely blame themselves) and put the burden on teachers down the road to try to build the foundation because we never gave it the time it deserved.

But how to provide that time? That’s the question I need to explore going forward. If you were hoping for any answers in this post, I don’t have them. Rather, if you have any advice or insights, I’d love to hear them, and if I learn anything interesting along the way, I’ll be sure to share on my blog.

 

 

 

 

Moving On Before It’s Over (3rd Grade)

If you’re just joining us, I’ve been writing a series of posts as I embark on my spring curriculum work to prepare for the 2018-19 school year. I’m sharing how our scope and sequence has evolved over time, rationales for why things are the way they are, and thoughts on what changes I might make for next school year. If you’d like to back up and read about an earlier grade level, here are the previous posts in this series:

Today I’ll be talking about our 3rd grade scope and sequence. Here they are for the past three school years. What do you notice? What do you wonder?

3rd Grade – School Year 2015-16

3rd15-16

3rd Grade – School Year 2016-17

3rd16-17

3rd Grade – School Year 2017-18

3rd17-18

Remember back in my first post in this series when I said, “Now that I’ve been doing this for a few years – and I’m starting to feel like I actually know what I’m doing…“? Yeah, 3rd grade is a prime example of how I have learned a lot over the past few years. I’m a little (maybe a lot) embarrassed to show you what it used to look like back in 2015. I had good reasons for what I attempted to do, but this was just a tough nut to crack.

So what was going on several years ago when I put our 3rd grade teachers through the wringer with 18 units in one school year? If you look at the 2015-16 scope and sequence closely, you’ll notice that one topic appears waaaaay more frequently than the others – multiplication and division. There were a total of 7 units just on multiplying and dividing.

This was very intentional. Just like I have specific numeracy goals in the previous grade levels, my goal in 3rd grade is to ensure students leave the school year as strong as possible in their understanding of multiplication and division. Specifically, I want to ensure students have the chance to develop mental strategies for multiplication and division.

Before I became the Curriculum Coordinator in my district, a team of folks analyzed fluency programs and ultimately decided that ORIGO’s Book of Facts is the one we would purchase for our entire district. After that decision, but still before I started working in this role, our district went through the adoption process for a new math instructional resource. Teachers selected ORIGO’s Stepping Stones program.

This turned out to be a wonderful fit because the mental strategies from the Book of Facts are baked into the lessons in Stepping Stones. (If you want to learn more about these mental strategies, check out these awesome 1-minute videos from ORIGO.) I didn’t want to rush students through the strategies, so I followed the Stepping Stones sequence of multiplication and division lessons. This gave each strategy its due, but it also resulted in 7 units on just this one topic.

Unfortunately, this meant squeezing in everything else in between all of those multiplication and division units. To my credit, I did share this scope and sequence with a team of six or eight 3rd grade teachers to get their feedback before putting it in place. I must be a good salesman because they thought it made sense and wanted to give it a try.

I’m sure you can imagine, it was tough that year. Just as teachers started a unit, it felt like it was ending. This happened to also be the year that our district started requiring teachers to give a district common assessment at the end of every unit. That decision was made after I’d already made all of my scope and sequences, otherwise I might have thought twice….maybe. The teachers felt like they were rushing through unit after unit and assessing their kids constantly. It was too much.

The next year we tightened things up quite a bit. We were able reconfigure concepts to end up with five fewer units than the year before. Without sacrificing my ultimate goal, I do feel like we ended up with a scope and sequence that has a reasonable amount of breathing room.

A major change that happened between last year and this year is that we removed the 10-day STAAR Review unit. We took 5 of those days and gave them to teachers at the beginning of the year to kick off with a Week of Inspirational Math from YouCubed. We took the other 5 days and gave them to units that needed more time. My rationale is that teachers often tell me they don’t have enough time to teach topics the first go round. If that’s the case, then I can’t justify spending 10 days at the end of the year for review. Those days should be made available earlier in the year to ensure there’s enough time for first instruction. If you’re interested, I shared additional reasons for this change along with an alternative to the traditional test prep review unit in this post on my district blog.

As embarrassed as I am to share the scope and sequence I inflicted on our 3rd grade teachers for an entire school year, looking at it now, I am proud of what we attempted and proud of the revisions we’ve been able to make over time. It’s finally a wieldy scope and sequence!

My reason for sharing this is to let people to know this work isn’t easy, especially people who are in the same boat as me or considering moving into this kind of role. There are a lot of moving parts within and across years, and you’re bound to make some mistakes. The important thing is to always have an eye for continuous improvement, because there is always something that could use improving. And if you can enlist the help of great teachers to provide their expertise and feedback, even better. This is not work that should be undertaken solo.

3rd Grade – School Year 2018-19

So what’s the plan for next school year? One area that’s been nagging me is addition and subtraction. If you read the 2nd and 3rd grade standards on this topic, you’ll notice the first half of each standard is identical except for one word: fluency.

  • Second grade
    • 2.4C Solve one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms
  • Third grade
    • 3.4A Solve with fluency one-step and two-step problems involving addition and subtraction within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction

One of the 8 effective teaching practices from NCTM’s Principles to Actions is that we should build procedural fluency from conceptual understanding. I see this happening in in our 2nd grade curriculum:

  • We build conceptual understanding of multi-digit addition and subtraction across 60 days in 3 units
  • And this helps us build fluency of 2-digit addition and subtraction in our computational fluency component across up to 97 days in 6 units

What about in 3rd grade? We kick off the year reconnecting with 2-digit addition and subtraction in our computational fluency component for 30 days in Units 1 and 2. This overlaps with our efforts to reconnect with the conceptual understanding of adding and subtracting 3-digit numbers in Unit 2.

Starting in Unit 3, our goal becomes moving students toward fluency. We strive to achieve this by having it as a computational fluency topic for up to 64 days in 4 units. Problem solving with addition and subtraction, and later with all four operations, also appears throughout the year in 41 days of spiral review in 3 units.

3rdAAGFall3rdAAGSpring

When I write it all out like that, I feel pretty good about it, but I do wonder if it’s enough. I hear from 3rd grade teachers, especially in the fall, that their students are having a really difficult time with addition and subtraction, a much harder time than they are with multiplication and division.

I’m not sure I want to make a change to 3rd grade’s scope and sequence though. They have enough on their plate. I want their kids to begin building multiplicative thinking, build a strong understanding of how multiplication and division are related, and, oh yeah, build fluency with all of their multiplication and division facts. That’s a lot to accomplish!

What I really want to do is look at how our 2nd and 3rd grade teachers are teaching addition and subtraction. My gut tells me the problems I’m hearing about have something to do with the standard US algorithms for addition and subtraction.

In case you’re wondering, the phrase “standard algorithm” does not appear in our addition and subtraction TEKS until 4th grade. And that makes sense. When you’re adding or subtracting 2- and 3-digit numbers, that can be done fluently in your head, given practice. However, once you hit 4th grade, and you start adding 6-, 7-, and 8- digit numbers, you’re going to want to pull out a calculat…er…I mean algorithm.

Despite my best efforts, I know there are some 2nd and 3rd grade students being taught the standard US algorithms which might be causing some of the issues I’m hearing about. As I like to say in this sentence I just made up, “When standard algorithms are in play, number sense goes away.” If teachers are still teaching standard algorithms despite everything in our curriculum pointing to the contrary, then I’ve got some work to do to shift some practices, including providing professional development. Thankfully I’ve already got some lined up this summer! I also need to work more with our instructional coaches on this topic so they’re better equipped to support the teachers on their campuses.

Got a question about our scope and sequence? Wondering what in the world I’m thinking about planning things this way? Ask in the comments. I’ll continue with 4th grade’s scope and sequence in my next post.

 

 

 

 

 

Our Venn Diagrams are One Circle

This past week my work life and my daughter’s school life came crashing together in the most wonderful way.

I.

On the way home from school on Thursday, she asked if we could practice “take away.” At first we practiced numerical problems like “What is 3 take away 1?” and “What is 5 take away 2?” Eventually I asked her if I could tell my problems in a story. The rest of the ride home we told “take away” stories. I told a few, and then she wanted it to be her turn:

  • “This one is sad. There were 2 cats and 1 of them died.”
  • “There were 6 oranges on the counter. A girl ate 2 of them and they died in her mouth.”
  • “There were 8 trees, and 3 of them got cut down.”
  • “There were 6 roads, and 2 of them fell down.” (I was able to figure out she was referring to overpasses because that’s what we were driving under at the time.)

Slightly morbid, but she’s 6 years old, so I roll with it, especially since she isn’t usually this chatty about anything related to school.

Anyway, as we were getting closer to home, I remembered that the math unit she’s currently in in school uses some numberless word problems, so I asked, “Have you ever had a problem about some geese and some of them stop to rest?”

(Stunned silence)

“How did you know that?!”

“What about a problem about a boy who checks out some books from the library and returns only some of them?”

(Stunned silence)

“Yes! How did you know that one!”

“Because I wrote them.”

“What do you mean?!”

“I’m the author of the take away stories you’ve been working on in math class.”

And thus our two worlds – my work and her school – came crashing together for the first time ever.

I’ve mentioned to her before that I work with and help teachers, but it’s always been in the abstract. Finding out that I was the author of specific problems she’s encountered in her classroom just blew her mind. She wanted to see some of them when she got home. Knowing she probably won’t always be this interested in my work, I was only too happy to oblige.

II.

As I was scrolling through the suggested unit plan to find the numberless word problems, I asked her about other tasks in the unit to see which ones she remembered. I asked about Bag-O-Chips, a 3 Act Task from Graham Fletcher, which was planned for the day after the numberless word problems, but she said she’d never seen it before. I have no idea how closely her teacher follows the unit plan, but lo and behold, the next day in the car when I asked what she did at school she said, “We did the bags of chips!”

We talked a little bit about the task in the car, and a little later as we finished up dinner I showed her the Act 1 video. Her eyes lit up. “That’s the video!”

We kept going back and forth between the image of what came in the bag and the image of what should have come in the bag. She happily used her fingers to figure out how many missing bags there were of each flavor.

I thoroughly enjoyed talking through the task with her, and what a pleasant surprise when she wanted to do another.

III.

I’m not one to pass up an opportunity talk about math with my daughter, so I quickly scanned Graham’s list of 3 Act Tasks to find one I know we didn’t include in our suggested unit plans. I settled on Peas in a Pod.

Peas01

Source: https://gfletchy.com/peas-in-a-pod/

First, we watched the video and estimated how many peas would be in each of the pods.

“I think there are 3 in this one, 4 in this one, and 10 in this one. No, 13 in this one.” (She estimated from right to left in case you’re wondering.)

“Hmm,” I said, “I think 3 is a good guess for the first one. I think there might be 4 or 5 in the second one, and I’m going to agree with your first guess of 10 for the third one.”

Estimation is a new skill for Kindergarten students. I talk about guessing and she talks about being right. She thinks the goal is to be the person who guesses the correct (exact) amount. I’m going to keep talking about being close and reasonable because over time I know her understanding of what estimation is will develop and refine.

Then we watched the reveal video.

Peas02

Source: https://gfletchy.com/peas-in-a-pod/

“I wasn’t right and you weren’t right!” She exclaimed.

“That’s okay. All of our guesses were pretty close, even though none of them matched the exact number of peas. I was surprised that this one only had 2 peas in it. I thought for sure there were more in there.”

“Me, too.”

“Hmm, I have another question for you. How many peas are there altogether?”

“Let me count.”

“I want to see if you can do it without counting on the picture. How many peas were in each pod?”

“8 and 7…and 2.”

“So how could you figure out the total?”

At first she tried using her fingers. She counted out 8 fingers, and then continued counting from there. I couldn’t really tell what she was doing, but at one point, after lots of ups and downs of fingers, she said, “18.”

Pretty close!

I didn’t say that though. Instead I said, “Hmm, I wonder if that’s the right amount. What other tool could we use to check your answer?”

She decided to get her Math Rack to check, and as a complete surprise to me she said, “Can you make a video of me?” Make a video of you solving a math problem? Why, of course!

Watching her first attempt, it was fascinating seeing her trying to keep track of two separate counts: (1) counting on from 8, “…9, 10, 11, 12, 13, 14,…” and (2) counting the 7 she was combining with the 8, “1, 2, 3, 4, 5,…”

It seems like she abandoned the double counting  when she was so close to being done. I wonder if she sort of gave up and just continued counting to 18 since that’s what she had thought the answer was before.

I had a split second to think about how to respond. I didn’t want to confirm whether the answer was correct, and I wanted to see if she would be willing to try combining the three quantities again.

There was definitely a lot more accuracy when she separately modeled each quantity! I was impressed with the double counting she was attempting earlier, but in the end she was more successful when she could show each quantity separately and then count all.

It was a proud dad moment when she didn’t just accept 17 as the correct answer. She decided we should look at the picture of all the open pea pods to check. And, sure enough, when I held up the phone with the image of all the open pea pods, she was able to count all and verify that there were in fact 17 peas.

All in all, I’m over the moon. All year long I’ve asked her about school (and math), but up until now her answers have been fairly vague. (“I’m so surprised,” said no parent ever.) The most I’d gotten out of her before was that they did Counting Collections.

But now we’ve actually had a full blown conversation about the work she’s been doing in school, specifically activities I wrote or helped plan for our Kindergarten units. I’ve always loved talking about counting and shapes and patterns with my daughter since before she ever started school, but to have our worlds collide like this was really special. I enjoyed getting to share and talk about my work with a very different, and more personal, audience than I’m used to.

 

Moving On Before It’s Over (Kindergarten)

This school year isn’t even over yet, but in my role as a Curriculum Coordinator, I’m already starting to look ahead to next school year. I feel like I’m cheating on the current school year, but if I don’t start now, there’s no way I’ll have everything ready when the teachers come back in August.

One of my responsibilities every spring is to analyze our instructional units to determine whether any changes need to be made for the upcoming school year. Over the past several years, I’ve made some pretty drastic changes to our scope and sequence, but each year I feel like it’s been less and less and that we’re settling on a coherent plan that works for our teachers and students.

Now that I’ve been doing this for a few years – and I’m starting to feel like I actually know what I’m doing – I thought I’d share our scope and sequences to give you a sense of what kinds of changes we’ve made over time and what we’re planning for next year. I have no idea whether this will be useful to anyone, but if I don’t share then I’ll never know.

Let’s start with Kindergarten!

Here are our scope and sequences of units for the past three school years. What do you notice? What do you wonder?

Kindergarten – School Year 2015-16

K15-16

Kindergarten – School Year 2016-17

K16-17

Kindergarten – School Year 2017-18

K17-18

Let me explain some of the big changes that have happened over the past few years as well as the rationale behind our scope and sequence.

Kindergarten starts with introducing students to the numbers through 5 and then the numbers through 10. This has been fairly stable over the past few years. At this early part of the year, the focus is on counting, counting, counting and representing, representing, representing. Students come to us with a wide range of abilities. We can’t presume their understanding so we want to ensure everyone has a solid foundation in the first month or so of the school year.

You’ll notice over the past few years that unit 3 on sorting and classifying jumped up from 11 days to 15 days to 25 days. Sorting and classifying are huge verbs in mathematics, and we wanted students to start engaging with them right away via our data and geometry standards. The jump in days came because the unit used to only include 3D figures. We used to introduce 2D figures later in the school year. Now this unit includes both 3D and 2D figures.

We circle back around to numbers to 10 in unit 4. Students continue to count, count, count and represent, represent, represent, but they also start comparing in this unit. This is followed by our measurement unit which extends the concept of comparison as students talk about things being longer or shorter, heavier or lighter, and more full or less full.

During the 2017-18 school year we made it so our addition and subtraction units are back to back, followed by our unit on numbers to 20. This is because the old scope and sequence confused teachers. For the first half of the year students engage with numbers to 10. After winter break, students used to work in a unit where they engaged with numbers to 20, only to encounter a subtraction unit afterward that suddenly said to only focus on numbers to 10 again. Teachers were baffled by this. If students were learning about numbers to 20, then why weren’t they subtracting with numbers to 20 in the next unit? The answer is because our standards explicitly state to add and subtract within 10.

We opted to remove the confusion by putting both the addition and subtraction units before the unit on numbers to 20. That way it maintains a flow of working within 10: They learn to count and represent numbers to 10, compare numbers to 10, and then add/subtract numbers to 10 (in contexts). Finally we extend to numbers to 20. Our unit on numbers to 20 is a long one because it takes the concepts of counting, representing, and comparing and puts them together all in one unit.

The year closes out with two units. The first is our personal financial literacy unit, which introduces skills such as identifying coins by name, identifying ways to earn income, differentiating money received as income vs gifts, listing simple skills required for jobs, and distinguishing between wants and needs.

The second unit to close out the year is our addition and subtraction unit that brings the operations together to give students an opportunity to start having to identify which operation is needed in a given situation. The earlier units focused on working through the language stages of addition and subtraction separately to help students connect those operations to the actions of joining and separating (as per our standards), but at the end of the year we want students to have the opportunity to problem solve and make decisions about whether a given situation involves joining or separating.

These last two units used to be in reverse order, but after some feedback from teachers I changed it for the 2017-18 school year. Basically we ran into an issue where teachers couldn’t give grades on the report card regarding the financial literacy standards because grades were due before they completed that unit. Since addition and subtraction were already introduced earlier in the school year, I moved that to become the final unit so that teachers could teach the entire financial literacy unit before they have to submit report cards.

Kindergarten – School Year 2018-19

I’m pretty happy with the Kindergarten scope and sequence from this school year. I’m going to meet with my Kindergarten curriculum collaborative in a month or so to see if they agree, but I’m not anticipating making any changes for next school year.

You’ll notice that our scope and sequence spends a TON of time on numbers to 10 because that is the focus of our Kindergarten standards. Students do extend these understandings as they work with numbers to 20, but numbers to 20 is actually the focus of the 1st grade standards. You’ll see what I mean in my next post on 1st grade.

One of my primary goals across each grade in grades K-5 is to ensure sufficient instructional time on core concepts for that grade level. I want students who need intervention later on to end up there because they truly aren’t understanding concepts, not because they weren’t given sufficient time to learn during first instruction.

One thing I am trying to decide about for next year is whether I’ll specify spiral review topics throughout the year. Here’s our at-a-glance so you can see how each unit is broken down into three instructional goals – focus TEKS (standards), computational fluency, and spiral review.

KAAGFall

KAAGSpring

In Kindergarten we don’t have spiral review in the fall semester because the math block is only 60 minutes – 50 minutes for core lesson and 10 minutes for computational fluency. In the spring semester we add in 20 minutes of daily spiral review to bring up our math block to 80 minutes daily.

I suggest topics to review during spiral review to help teachers out, but I am afraid that this creates a confusing message. I wholeheartedly want teachers to review the concepts their students need to review. For example, if a teacher knows some students are struggling comparing numbers to 10 in unit 8, then by all means, review that concept rather than sorting and classifying with 2-D and 3-D figures.

The only reason I list topics is to give some guidance to help teachers ensure that topics are coming up again throughout the year. I know from firsthand experience as a classroom teacher that I was often working at the day-to-day or, if I was extremely lucky, the week-to-week level. Now that I’m in a position that allows me to look at the level of the entire year, I try to provide as much guidance as possible for teachers to help them navigate the school year.

Got a question about our scope and sequence? Wondering what in the world I’m thinking about planning things this way? Ask in the comments. I’ll continue with 1st grade’s scope and sequence in my next post.

 

 

What We Presume

I once heard an analogy that teaching is a lot like being a doctor…if the doctor had to diagnose and treat 25 patients all at the same time. It’s cute and helps drive home the point that the work of teachers is complex as they tackle the daily challenges of meeting the needs of many students simultaneously. However, this analogy hits too close to home as it reflects a shift in the profession I’ve been noticing over the past few years. The role of a teacher really has become more like being a doctor, and that bothers me.

These days, education is driven by capital D Data. Data, Data, Data. And why? Because like a doctor, we want to diagnose what’s wrong and help fix it.

And that’s where the problem lies. We presume illness.

This post from Tracy Zager exemplifies my concern. In the post, she recounts the diagnostic test her daughters each had to take on the very first day of 2nd and 4th grade.

Welcome to the new school year!

Unfortunately, nowadays teachers feel pressured to collect as much Data as possible as soon as possible so they can diagnose the illness and begin treatment right away. Does that really need to be our focus on day one? Or even day 2, 3, 4, or 5? As Tracy says in her post,

“On day one, I really don’t care if my students know the vocabulary word for a five-sided polygon, can tell time to the half hour, and can calculate perimeter accurately. I’d much rather know how they attack a worthy problem, how they work with one another, and how they feel about the subject of mathematics. I am much more interested in the mathematical practice standards than the content standards in the fall.”

The concern Tracy shares dovetails with the message Ken Williams gave in his keynote back in July at CAMT 2017. The overall talk was about disrupting the status quo with regards to labeling and limiting students. This message jumped out at me during his talk:

And yet this is exactly the kind of experience Tracy shared in her blog post! Ken Williams challenges this practice and the limits it places on our students:

When we presume there’s an illness – a problem with a student or group of students – then we’re setting our expectations about what we’re going to find. If we train ourselves to seek out faults and deficiencies, then that’s what we’re going to get good at finding.

Here’s what I’d love for us to presume instead. To quote Andrew Gael, let’s presume competence. Presume that when our kids walk in the door on the first day of school, they have funds of knowledge to draw on and the ability to learn even more. As we get to know our students, we’ll observe variation – it’s natural – and once we’re aware of what those variations are for individual students we can start brainstorming ways to accommodate to ensure each and every student can continue to have access to the learning in our classrooms.

When we presume competence, we aren’t looking for illness, we’re looking for strength. We’re sending important messages to our students from day one that we value who they are and who they can become as they journey with us through the school year.

 

 

Doing Math with #ElemMathChat

Last night we kicked off the fourth year of #ElemMathChat. Yay! It’s so exciting to spend an hour each week talking with and learning from so many passionate educators.

Birthday-Ad-2

One thing I’ve often heard from participants is that they like that we regularly do math together during our chats. I didn’t want to disappoint in our first chat of the year, so I dropped in a few tasks. I thought I’d collect them together in a blog post in case anyone missed the chat or wants all the pictures gathered together in one place. So let’s get started!

How Many?

This task actually appeared before the chat. I’ll admit that I sometimes try to cram a bit too much into our hour together – I want to do it all! – so I opted to move one of the questions out of the chat and instead turn it into something fun for folks to play around with during the day leading up to the chat.

How-Many

I saw two common answers to this question throughout the day:

  1. I assume you mean triangles. I see 4.
  2. How many what?

I owe Christopher Danielson thanks for turning me on to this deceptively simple question as well as for engaging with some of the folks yesterday who were tackling the question as it relates to this image.

I highly recommend checking out Christopher’s blog post where he talks more about this question and shares some images you just might want to use in your classroom. He only asks that you let him now what kids do with those images and ideas. You can share with Christopher on Twitter @Trianglemancsd.

Let’s Estimate!

For our first task during #ElemMathChat, I asked everyone to estimate the number of hats in this sculpture:

When I first saw this sculpture at the Fort Worth Convention Center at this year’s CAMT Conference, I was instantly curious how many hats were used to make it. It took some digging, but I finally came up with all the information I needed.

I asked participants to share their too LOW, too HIGH, and just right estimates. What I’m really looking for is the range they’re comfortable with. How risky are they willing to be with their estimates?

  • This is a low-risk estimate: “My too low estimate is 10. My too high estimate is 5,000. My just right estimate is 500.”
  • This is a riskier estimate: “My too low estimate is 400 and my too high estimate is 500. I’m pretty sure the number is somewhere in the 400s.”

Notice the difference? One person isn’t as comfortable limiting the range of their estimates while the other person has narrowed it down to “somewhere in the 400s.” I don’t really care about the just right estimate so much because I value helping students come up with estimates that make sense and are generally close rather than valuing whether or not they guessed the exact number. Helping students get better at estimating and be willing to make riskier estimates takes time and practice, but it’s valuable work.

Here’s the final reveal with some additional information about the sculpture, in case you want to do this activity with your students:

P06

Numberless Graph

As much as I love numberless word problems, I’ve been fascinated with numberless graphs this past year. I knew I wanted to include one in our chat! When I shared this first image, I asked my go-to questions, “What do you notice? What do you wonder?”

P07

The engagement was high and it was so much fun to see what people noticed and wondered as they looked at the graph.

NG01

NG02

We moved on to another question before coming back for the second reveal. Again, I asked, “What do you notice? What do you wonder?”

P09

Adding the scale and currency amounts just increased the wonderings about what this graph could be about.

NG03

Finally, after building anticipation and making everyone wait through another chat question, I finally revealed the full graph and asked, “What questions could you ask about this graph?”

 

 

 

The noticing and wondering didn’t stop! It was great!

NG04

In case you’re wondering, Pokémon GO is a game you can download on mobile devices. The game is free, but there are things you can buy within the game. So what this graph is showing is the average amount people spent buying things inside of the game. In Japan, for example, looking at all the people in the country who have downloaded the game, each of those people has spent $26 on average. In the US, on the other hand, the people who have downloaded the game have each spent $7.70 on average. The interesting thing about this is that the data is a bit misleading if you don’t know more details:

This leads to a great discussion to have with kids, “If US players aren’t spending nearly as much in the game as players in Japan, then how come the total amount earned from purchases in the US is over $100 million more than in Japan?”

A Lens Looking Forward

This isn’t doing math together, but I did want to share the final question of the night.

P13

My lens for a long time has been play, but I think I’m due for a new one. Not sure what it’s going to be yet. What about you? What word would you choose to use as a lens for the work (and fun!) ahead this school year?

 

 

 

Take It Away – CGI National Conference 2017

At the end of June, I attended (and presented at!) my first CGI National Conference. I also visited the Pacific Northwest for the first time in my life. Seattle was beautiful and the learning was great. I know there are folks out there who aren’t able to attend many conferences, so hearing from attendees is one way they learn from afar. So, in case you weren’t there, let me tell you what resonated with me from the conference.

DDRqxmRV0AAh3xs

One thing I especially liked about the conference was the essential questions. Speakers weren’t required to connect with them directly. Rather they were designed for participants to personally consider and reconsider as they attended keynotes and sessions:

  1. In what ways are your students allowed to bring “their whole selves” to the learning of mathematics in your classroom and school?
  2. What do you know about the cultural and lived experiences of the students in your mathematics classroom? (How can you broaden your knowledge?)
  3. How does your mathematics classroom interrupt and/or reinforce narratives of who is and who is not capable mathematically? (How could your classroom become more interruptive vs. reinforcing of these narratives?)

Not what you’d normally expect at a math conference, right? The focus on culturally responsive pedagogy was a breath of fresh air.

I also appreciated the emphasis on making connections – both in person and virtually.  A special thanks to Tracy Zager for giving folks a nudge as well as support. There were quite a few #MTBoS members in the audience, and I hope by the end of the conference that number increased.

DDRv8FNUAAACXJ2

The Opening Keynote was a panel discussion called “Talking Math With Kids.” The panel included Christopher Danielson who blogs at the aptly named talkingmathwithkids.com; Allison Hintz and Tony Smith from the University of Washington; and Megan Franke, Angela Turrou, and Nick Johnson from UCLA. They told stories of their experiences working with young children around mathematics. The (extremely important) theme of their talk is that young children have mathematical ideas. We should listen to, value, and encourage them.

Then we moved into our first of six sessions. I happened to present during the first session. It was a little stressful, especially since the projector was not cooperating at first, but I was happy to get it out of the way right up front. 🙂 My talk was called “Numberless Word Problems in the Elementary Grades.”

In the talk we solved a numberless word problem together to create a shared experience. Then I shared the story of Jessica Cheyney using numberless word problems in her classroom to help students connect the act of separating to the concept of subtraction. Next I shared the story of Casey Koester, an instructional coach who used intentional planning and numberless word problems to help 2nd grade students make better sense of word problems. I closed by sharing resources teachers can use to implement numberless word problems in their classrooms.

Since we started in the afternoon, the opening keynote and session #1 were all we did on day 1. Day 2 opened with another keynote called “Equal Math Partners: Families, Communities, and Schools.” The keynote included Erin Turner, Julie Aguirre, and Corey Drake from the TEACH Math Project; and Carolee Hurtado from the UCLA Parent Project.

I loved this keynote! We often talk about what teachers and students are doing in schools and gloss over or ignore the role parents can and should take in their children’s mathematical development. We also ignore the role that students’ family, community, and culture play in their learning of mathematics. The two projects shared in this keynote were inspiring to listen to and so important for us to hear.

The first story was about the UCLA Parent Project, a multi-year project that invites parents in to become partners in their children’s math learning. It also builds up the parents into leaders.

The second project was the TEACH Math Project. Pre-service teachers were required  to take a community walk to interview people and learn more about the community in which their students lived. We often ask teachers to create tasks and problems based around student interests, but this often leads to generic problems around what we assume the students’ interests are. In this project the pre-service teachers had to get to know their students, their lives, and their interests for real. Then they had to use what they learned to create relevant tasks and problems. I loved it.

After the keynote we attend session #2. I went to Megan Franke’s “No More Mastery: Leveraging Partial Understanding.” This resonated so much with me because it matches my current thinking about how we should be analyzing and interpreting student work.

According to Megan Franke, mastery learning “breaks subject matter and learning content into clearly specified objectives which are pursued until they are achieved. Learners work through each block of content in a series of sequential steps.” The trouble with mastery learning, however, is that actual learning isn’t that clean. Further, it sorts students into two groups – those who’ve got it and those who don’t – which contributes to inequality.

A partial understanding approach, on the other hand, looks at understanding as something we can have varying amounts of. What’s important is finding out what students’ current understanding and capabilities are and build from there. Megan shared an example of a preschool counting task where students had to count 31 pennies. According to the mastery approach – they either counted to 31 correctly or they didn’t – only 2.5% of the students demonstrated mastery of counting. However, when they scored the students on a range of numeracy criteria – knowledge of the counting sequence, 1-to-1 correspondence, cardinality, counting the whole collection, and organization – the picture changed completely. Only 12% of the students demonstrated little to no number knowledge while 64% of them demonstrated understanding of multiple criteria.

For session #3 I got to attend Christopher Danielson’s “The Power of Multiple Right Answers: Ambiguity in Math Class.”

I especially love the power of the phrase, “Well, it depends…” and hope to help teachers in my district see the power in crafting questions and tasks that lend themselves to some ambiguity. I also love this thought by Allison Hintz retweeted by Christine Newell:

Capture

If you haven’t seen Christine Newell’s Ignite Talk from NCSM 2017, “Precision Over Perfection,” check it out because it touches on this very idea.

During session #4 I went to lunch, and I’m going to skip talking about session #5 because it didn’t really resonate or push my thinking very much.

Session #6 was fantastic though! I saw Jennifer Kolb and Jennifer Lawyer’s talk “The Importance of Counting in Grades 4 & 5 to Support Complex Ideas in Mathematics.” I noticed that counting in general and counting collections specifically appeared across the conference program. I have made the counting collections routine a mainstay in my primary grade curriculum materials. I was especially intrigued to hear stories of how intermediate grade teachers are using the routine. The two Jennifers did not disappoint!

In the example above, counting groups and then groups of groups helped nudge these 5th grade students into an understanding of the Associative Property of Multiplication.

This same idea of “groups of groups” led students to explore groups of 10 in a way that led to deeper understandings of place value and helped introduce exponents:

Counting is a skill we naively think students “master” in the early grades, but taking a partial understanding perspective, we can open up the concept to see that there’s so much more to learn from counting in later elementary grades and beyond!

On day 3 of the conference we opened with another enlightening keynote “Anticipatory Thinking: Supporting Students’ Understanding of How Subtraction Works.” This keynote was led by Linda Levi from the Teachers Development Group and Virginia Bastable from Mount Holyoke College.

Linda Levi’s portion of the talk reflected on the meaning of computational fluency. She reminded us that while many people think of fluent as being fast, the definition is much broader and more nuanced than that.

“Computational fluency refers to having efficient and accurate methods for computing. Students exhibit computational fluency when they demonstrate flexibility in the computational methods they choose, understand and can explain these methods, and produce accurate answers efficiently. The computational methods that a student uses should be based on mathematical ideas that the student understands.” (Principles and Standards for School Mathematics, 2000, p. 152)

We started with a video example of a student solving 5,000 – 4,998 using the standard algorithm. Is this an example of computational fluency? According to the above definition, no, it’s not. Producing an accurate answer like a calculator is not the same as demonstrating computational fluency. In this example the student did not demonstrate flexibility in the methods he chose, he didn’t understand and couldn’t explain his method, and his method is not based on mathematical ideas that the student understands.

We then watched videos of two other students who used subtraction strategies they invented. Were these students demonstrating computational fluency? The students clearly understood their strategies and they were based on mathematical ideas the students understood. However, we then watched these same students solve another problem and realized that these students were not flexible in their thinking. They used the same strategies for subtracting even though other strategies would have been more efficient for the new problem. It’s really important to remember how multi-faceted computational fluency is and attend to all facets as we work with students.

One of Linda Levi’s main messages was that understanding how operations work is the foundation for computational fluency. She shared with us how we can use equations that represent students’ strategies as objects of reflection for discussing why a strategy works and to help make explicit important mathematical ideas.

Virginia Bastable followed up with a talk about mathematical argument which was along the same theme of helping students understand how the operations work.

One thing that resonated with me from her talk was the important work of opening up mathematics learning beyond the narrow focus of answer getting. Rather, mathematics is a landscape that also involves sense making, exploring, wondering, and even arguing.

After the keynote I attended Kendra Lomax’s session “Learning from Children’s Thinking: A CGI Approach to Formative Assessment.” This session dovetailed nicely with Megan Franke’s session on partial understandings because the whole point of the CGI assessment is to get a sense of where the child is at in a variety of ways rather than a binary “yes, they have it” or “no, they don’t.”

If you’re interested in this assessment approach, then I have good news for you! A slew of assessment resources are available at Kendra’s website, Learning From Children. Look at the resources under “Listening to Children’s Thinking” in the menu at the top of the page.

For my final two sessions I went to hear more from Linda Levi and Virginia Bastable. Linda’s talk “Understanding is Essential in Developing Computational Fluency” gave us practice recording student strategies using equations as a way to make explicit the properties and big ideas embedded within the strategies.

Virginia’s talk “Support Math Reasoning by Linking Arithmetic to Algebra” dove more deeply into the role mathematical argument can play in helping students develop a deeper understanding of the operations. When I think back to the skill-based worksheets of my youth, I’m jealous of the deep thinking elementary students are given the opportunity to do in classrooms today.

We came back together for a closing session and that was the end of the conference. Spending three days with like-minded educators who care so deeply about mathematics education and nurturing children’s mathematical ideas helped recharge my batteries before coming back to work for the 2017-18 school year. It will be another two years before the next CGI conference – this time in Minneapolis – and I can’t wait to attend!