Category Archives: Numberless Word Problems

You Didn’t Hear It From Me

On Thursday, I’ll be sharing about numberless word problems at the NCTM Annual Conference in Washington, D.C.

2018-NCTM-Program-Bushart

In preparation for my session, I reached out to fellow educators on Twitter, asking them, “How have numberless word problems impacted student sense making in your classroom?” I’ll have plenty to say about this in my talk, but I wanted to take this opportunity to let a wider variety of voices share their thoughts and reflections on using numberless word problems.

Macy, Math Interventionist, Arkansas:

“They no longer see two numbers and add. They think about the problem and what a reasonable answer could be.”

Julie Bourke, 2nd grade teacher, Michigan:

“I can actually watch my students shift from plucking out numbers and adding them to reading the problem and visualizing what is happening. This helps them solve and understand exactly what the quantities in the problem represent.

I also saw a shift in my repeated direction of “don’t forget the unit/label” has disappeared because the students aren’t thinking of the numbers as separate from the problem. They are making sense of the context, deciding on the best strategy to solve and the numbers in the problem aren’t really the focus.

This has also improved my own teaching. I was a “circle the number and underline the key words” teacher and I was teaching students to follow directions. Now I am teaching mathematicians who make sense of problems, develop strategies and discuss solutions within a context.

This has been an important shift for my career and my own understanding of teaching math.”

Kristen Mangus, Math Support Teacher, Maryland:

“I have shared these with teachers in my school, K-5. K teachers started using these when they began teaching word problem standards and they instantly noticed a difference in how their students solved problems compared to when they taught problem solving without numberless word problems.

Numberless word problems also reduce “number plucking” because students have time to think about the problem, make connections and ask questions so that they are ready and confident when the numbers are introduced.”

Kjersti Oliver, Middle School Instructional Facilitator, Virginia:

“These are great for MIDDLE SCHOOL TOO! Especially students that are EL or struggle with word problems! They can work for equation word problems, systems, proportions, etc.! Great entry point for students!”

Carrie DeNote, Math Interventionist, Florida:

“The student Notice/Wonder about everything now. I’ve seen N/W t-charts on their assessments where they have used it to help them make sense of a question.”

Jana Byrd, K-2 Elementary Specialist, Alabama:

“The very first time I used numberless story problems, I was amazed at the amount of math vocabulary that naturally surfaced during the discussion; greater than, less than, the same, equal, etc.

Without the numbers in the problem, I noticed that students focused on finding the relationship between the quantities even though they weren’t there. That prevented them from just grabbing numbers and doing something with them.

When the numbers were presented within the story problem, they did what made sense to them. They were able to decide on a strategy and discuss their thinking in a more clear manner. I’m sold on numberless word problems, especially when introducing new situations to students.”

Jordan Hill, 2nd grade teacher, Alabama:

“It has allowed the students to stop and make sense of the situation before attacking the problem.”

Wendy Wall, Mathematics Support Teacher, Virginia:

“Thank you! You have created an opportunity for students to talk and reason. You have created a resource teachers love!”

Deepa Bharath, Math Coach, Florida:

“Focus is on understanding the context, considering what is asked and possible strategies – students can notice structures and similarities, this is like the other one we did, when numbers are shown students tend to think less and just compute. Also helped students to be less afraid of fractions and large numbers – we solved the same problem with whole numbers before working with fractions, almost like a number string estimating first how the answer would be affected.”

Nicole Grygar, 1st grade teacher, Texas:

“When solving word problems, they are not jumping to conclusions. They are working all the way through the problem to make sure they are solving the right question.”

Christine Mauer, Special Education Resource & Inclusion Instructional Assistant, Texas:

“Taking the numbers out of the questions has allowed them to become immersed in the story first.”

Jenna Laib, K-8 Math Specialist, Massachusetts:

“Students are willing to think deeper and slower about world problems; they don’t shy away from a block of text as much, and they have a greater awareness of problem types (CGI style) which helps them determine their strategy. I have noticed the biggest change in students with disabilities, especially students with language-based disabilities like dyslexia.”

Melanie Tindall, Elementary Math Specialist K-5, New Jersey:

“Numberless word problems help students think about and visualize the problem. They help students think about what information they know and what information they need in order to solve the problem. They also help students think about what question(s) can be answered with the given information.”

Kristine Venneman, Elementary Mathematics Specialist, Middletown:

“Students are essentially forced to consider the context to begin their solution path without simply adding or multiplying.”

Rose Scullion, K-5 Mathematics Specialist, New Jersey:

“Before numberless word problems became part of regular instruction students would take the numbers they saw in the problem, cross their fingers, have a hope and a prayer, and perform some type of procedure or algorithm, with no sense if they were correct or not. Now, students are relying more on visualizing the mathematical context, planning out their solutions, and choosing strategies to solve.”

Anonymous, Math Coach, Connecticut:

“The use of them have increased students focusing on the context and sense making.”

Shawna Velt, Special Education Math Consultant, Michigan:

“I share this strategy with special education teachers to support students in understanding word problems. We use cubes to model along with each step”

Brian Buckhalter, K-4 Math Coach, Mississippi:

“Traditionally, the “goal” of math class is to find the answer. Numberless word problems take the attention away from finding the (usually) one correct solution. Instead, they open the door for discussion among students to share their interpretations and reasoning about problems. Then the focus shifts from following steps or other procedures to reasoning, examining relationships, extending patterns, doing what “just makes sense” (as my students would say) and other hidden beauties of truly understanding mathematics.”

Thank you to everyone who took the time to share their feedback and experiences! It was so heartwarming to read how numberless word problems have impacted other classrooms across the country. As someone whose mission it is to help students develop identities as mathematical sense makers, it means a lot that this strategy has helped so many of you foster that with your own students.

And to those of you able to join me at the NCTM Annual Conference in D.C., I look forward to seeing you in a couple days!

A Little Preview

Next week I have the privilege of presenting a session about numberless word problems at the 2018 NCTM Annual conference. Even if you don’t teach in grades 3-5, I still invite you to join us because there will be lots of ideas shared of interest to multiple grade levels.

2018-NCTM-Program-Bushart

During the session, I’ll be referencing a few numberless word problems used over the course of several months in a 3rd grade classroom in my district. I thought it might be fun to share them before my session so folks could take a peak (and possibly even try one or two of them out before my session!).

The Collie and Chihuahua Problem – This is a comparison problem where the difference is unknown.

The Ancient Penguin Problem – This is another comparison problem. This time the larger quantity is unknown.

The Sand Castle Problem – This is an equal groups problem with an unknown product.

The Minecraft Problem – This is a multi-step problem involving multiplication and addition.

The Piano Practice Problem – This is a multi-step problem involving addition and subtraction.

The Pie Problem – This is a multi-step problem involving multiplication.

Enjoy! And if you’ll be joining me next week at NCTM, I look forward to seeing you in Washington, D.C.!

The Slow Reveal

This year my colleague Regina Payne and I tried something new as we visited classrooms across our district – numberless graphs. Similar to a numberless word problem, you present a graph with no numbers and proceed to have a rich mathematical discussion as you slowly reveal more and more information on the graph. Early in the school year, I shared a Halloween-themed numberless graph, and I also wrote a blog post about it.

We briefly touched on this work in our session at the 2017 NCTM annual conference, and it’s been exciting to see my #MTBoS colleagues taking the idea and running with it in their schools! In case you don’t follow them – which will hopefully change after reading this post! – I want to share their work so you don’t miss out on all the great stuff they’re doing.

Kassia Wedekind

Kassia has written two wonderful blog posts about how she took our ideas and tinkered with them to create a data routine called Notice and Wonder Graphs. I like this name because it’s more inclusive than numberless graphs. When it comes to graphs, you might hide the numbers, but you could just as easily hide other parts of the graph first. It all depends on your goals and how you want the conversation to unfold. In Kassia’s first post, she shares this graph with students. Notice it has numbers, and little else.

Kassia01

Curious what it’s about? Then check out Kassia’s post. I’m betting you’ll be quite surprised when you reach the final reveal.

I will share this snippet from her post:

I love this routine for many of the reasons that I love Brian’s numberless word problems–it slows the thinking down and focuses on sense-making rather than answer-getting.

But I also love it because it brings out the storytelling aspect of data. So often in school (especially elementary school!) we analyze fake data. Or, perhaps worse, we create the same “What is your favorite ice cream flavor?” graph year after year after year for no apparent purpose.

I’ve decided to make it a goal to think more about data as storytelling, data as a way to investigate the world, and data as a tool for action. In my next two posts (YES, people! I’m firing the ole blog back up again!) I’m going to delve into the idea that we can use data to discuss social justice ideas and critical literacy at the elementary level. I’m just dipping my toe into this waters, but I’m really excited about it!

And Kassia did just that! So far she’s followed up with one post where her students noticed and wondered about a graph showing the percent of drivers pulled over by police in 2011, by race. I love how the graph sparked a curiosity that got her students to dive more deeply into the data. How often does a graph about favorite desserts or our birthday months spark much of any curiosity?

Jenna Laib

Jenna shared a numberless graph that immediately got me curious! This is one she created to use with 6th grade students.

Jenna01

I can’t help but notice a bunch of dots grouped up at the beginning with a just few outliers streeetttcchhiiing across almost to the very end.

Jenna02

Once she included some numbers, my first instinct was that this graph is about ages. Apparently I wasn’t alone in that assumption!

JennaTweet01

And then there’s the final reveal.

Jenna03

So why did Jenna create and share this graph? What was her mathematical goal?

JennaTweet02

I especially loved this observation about how her students treated the dot at 55 before they had the full context about what the graph is really about.

JennaTweet03

Chase Orton

Chase wrote a detailed post about how he worked with 2nd grade teachers to do a lesson study about interpreting graphs.

…there’s so many rich opportunities for meaningful student discourse about data.  That is, if it’s done right.  Most textbooks suck all the life out of the content.  Students need to understand that data tells a story; it has contextual meaning that is both cohesive and incomplete.  Students need to learn how to ask questions about data and to learn to identify information gaps.  In other words, students need to learn to be active mathematical agents rather than passive mathematical consumers.

Chase walks you through the lesson he and the teachers created and tried out in three different classrooms. I love how he details all of the steps and even shares the slides they used in case you want to use them in your own classroom.

He closes the post with a great list of noticings and wonderings about continuing this work going forward. Here are a couple of them about numberless graphs specifically:

  • We need to give students more choice and voice about how they make meaning of problems and which problems they choose to solve.  Numberless Data problems like these can be be a tool for that.
  • The missing information in the graph created more engagement.

A huge thank you to Kassia, Jenna, and Chase for trying out numberless graphs and sharing their experiences so we can all be inspired and learn from them. I can’t wait to see how this work continues to grow and develop next school year!

If you’re interested in reading more first-hand accounts of teachers using numberless word problems and graphs, be sure to check out the ever-growing blog post collection on my Numberless Word Problems page. I recently added a post by Kristen Acosta that I really like. I’m especially intrigued by a graphic organizer she created to help students record their thinking at various points during the numberless problem. Check it out!

Trick or Treat!

Now that I’ve completed sets of numberless word problems for all of the addition and subtraction CGI problem types, I wanted to do something fun.

This school year, my co-worker Regina Payne and I have been visiting the teachers in our Math Rocks cohort. One of the things they’ve been graciously letting us do is model how to facilitate a numberless word problems. In addition to making this a learning experience for the teachers, we’ve made it a learning experience for ourselves by putting a twist on the numberless word problem format.

Instead of your usual wordy word problem, we’ve been trying out problems that include visuals, specifically graphs. Instead of revealing numbers one at a time, we’ve been revealing parts of the graph. Let me walk you through an example I made tonight.

Here’s the graph I started with. I created it with some data I found on the Internet.

graph06

If I threw this graph at a 4th or 5th grader along with a word problem, they would probably ignore what the graph is all about and just focus on getting the numbers they need for doing whatever computations they’ve decided to do. They would probably also ignore a vital piece of information – the scale that says “In Millions” – which means their answer is going to be about 1,000,000 times too small.

But what if we could change that by starting with something a little more accessible like this?

graph01

What do you notice? What do you wonder?

I’m guessing at least one student in the class would comment that it looks like a bar graph. Interesting. What do you think this bar graph could represent?

Oh, and you think a bar is missing in the middle. Interesting. What makes you say that?

graph02

What new information was added to the graph? How does it change your thinking?

Oh, so there is a bar between Hershey’s and M&M’s. How tall do you think the bar for Snickers might be? Why do you say that?

graph03

Now we know how tall the bar for Snickers is. How does that compare to our predictions?

Considering everything we know so far, what do you think this bar graph is about? What other information do we need in order to get the full story of this graph?

graph04

What new information was added to the graph? How does it change your thinking about what this graph is about?

What are Sales? How do they relate to candy?

What does “In Millions” mean? How does that relate to Sales?

I know we don’t have any numbers yet, but what relationships do you see in the graph? What comparisons can you make?

graph05

What new information was added? How does it change your thinking?

Hmm, how many dollars in sales do you think each bar represents? How did you decide?

graph06

How do the actual numbers compare to your estimates?

What were the total sales for Reese’s in 2013? (I’d sneak in this question if I felt like the students needed a reminder about the scale being in millions.)

What are some other questions you could use answer using the data in this bar graph?

graph07

What is this question asking?

How can you use the information in the graph to help you answer this question?

*****

I may or may not actually show that last slide. After reading this blog post by one of our instructional coaches Leilani Losli, I like the idea of letting the students generate and answer their own questions. In addition to being motivating for the students, it makes my time creating the graph well spent. I don’t want to spend a lot of time digging up data, making a graph, and then asking my students a whopping one question about it! That doesn’t motivate me to make more graphs. I  also want students to recognize that we can ask lots of different questions to make sense of data to better understand the story its telling.

Some thoughts before I close. This takes longer than your typical numberless word problem. There are a lot more reveals. Don’t be surprised if this takes you at least 15-20 minutes when you take into account all of the discussion. When I first do a graphing problem like this with a class, it’s worth the time. I like the extra scaffolding. Kids without a lot of sense making practice tend to be pretty terrible about paying attention to details in graphs, especially if their focus is on solving an accompanying word problem.

If I were to use this type of problem more frequently with a group of students, I could probably start to get away with fewer and fewer reveals. Remember, the numberless word problem routine is a scaffold not a crutch. My hope is that over time the students will develop good habits for attending to features and data in graphs on their own. If you’re looking for a transition to scaffold away from numberless and toward independence, you might start by showing the full graph and then have students notice and wonder about it before revealing the accompanying word problem.

If you’d like to try out this problem, here’s a link to a slideshow with all of the graph reveals. You’ll notice blank slides interspersed throughout. I’ve found that if you have a clicker or mouse that has a tendency to jump ahead a slide or two, the blank slide can prevent accidental reveals. It also helps with graphs because when I snip the pictures in they aren’t always exactly the same size. If the blank slides weren’t there, you’d probably notice the slight differences immediately, but clearing the screen between reveals mitigates that problem.

Happy Halloween!

Purposeful Numberless Word Problems

[UPDATE – You can find all of my numberless word problem sets on this page.]

This year I read Sherry Parrish’s Number Talks from cover to cover as I prepared to deliver introductory PD sessions to K-2 and 3-5 teachers in November. She outlines five key components of number talks; you can read about them here. One of the components in particular came to the forefront of my thinking the past few days: purposeful computation problems. I’ll get back to that in a moment.

It all started when I got an email the other day asking whether I have a bank of numberless word problems I could share with a teacher. Sadly, I don’t have a bank to share, but it immediately got me thinking of putting one together. That led to me wondering what such a bank would look like: How would it be organized? By grade level? By problem type? By operation?

That brought to mind a resource I used last year when developing an extended PD program for our district interventionists: the Institute of Education Sciences practice guide Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools. The guide lays out 8 recommendations. I was reminded of this one:

Recommendation 4. Interventions should include instruction on solving word problems that is based on common underlying structures.

Students who have difficulties in mathematics typically experience severe difficulties in solving word problems related to the mathematics concepts and operations they are learning. This is a major impediment for future success in any math-related discipline.

Based on the importance of building proficiency and the convergent findings from a body of high-quality research, the panel recommends that interventions include systematic explicit instruction on solving word problems, using the problems’ underlying structure. Simple problems give meaning to mathematical operations such as subtraction or multiplication. When students are taught the underlying structure of a word problem, they not only have greater success in problem solving but can also gain insight into the deeper mathematical ideas in word problems.

(You can read the full recommendation here.)

And it was this recommendation that ultimately reminded me of the part of Sherry Parrish’s book where she talked about purposeful computation problems:

“Crafting problems that guide students to focus on mathematical relationships is an essential part of number talks that is used to build mathematical understanding and knowledge…a mixture of random problems…do not lend themselves to a common strategy. [They] may be used as practice for mental computation, but [they] do not initiate a common focus for a number talk discussion.”

All of this shaped my thoughts on how I should proceed if I were to create a bank of numberless word problems to share. Don’t get me wrong, the numberless word problem routine can be used at any time with any problem as needed. However, the purpose is to provide scaffolding, and we should provide scaffolding with a clear instructional end goal in mind. We’re not building ladders to nowhere!

The end goal, as I see it, is that we’re trying to support students so they can identify for themselves the structure of the problems they’re solving so they can successfully choose the operation or operations they need to use to determine the correct answer.

In order to reach that goal, we need to be very intentional in our work, in our selection of problems to pose to students. We need to differentiate practice for solving problems from purposefully selecting problems that initiate a common focus for problem solving.

What Sherry Parrish does to achieve this goal with regards to number talks is she creates problem strings and groups them by anticipated computation strategy. I didn’t create problem strings, per se, but what I did do was create small banks of word problems that all fit into the same problem type category. I’m utilizing the problem types shared in Children’s Mathematics: Cognitively Guided Instruction.

CGI

Here’s the document the image came from. It’s a quick read if you’re new to Cognitively Guided Instruction or if you want a quick brush up.

So far I’ve put together sets of 10 problems for all of the problem types related to joining situations. I plugged in numbers for the problems, but you can just as easily change them for your students. I did try to always select numbers that were as realistic as possible for the situation.

My goal is to make problem sets for all of the CGI problem types to help get teachers started if they want to do some focused work on helping students build understanding of the underlying structure of word problems.

I created these problems using the sample contexts provided by Howard County Public Schools. They’re simple, but what I like is that they help illustrate the operations in a wide variety of contexts. Addition can be found in situations about mice, insects, the dentist, the ocean, penguins, and space, to name a few.

As you read through the problems from a given problem type, it might seem blatantly obvious how all of the problems are related, but young students don’t always attend to the same features that adults do. Without sufficient experience, they may not realize what aspects of a problem make addition the operation of choice. We need to give them repeated, intentional opportunities to look for and make use of structure (SMP7).

Even though I’m creating sets of 10 problems for each problem type, I’m not recommending that a teacher should pick a problem type and run through all 10 problems in one go. I might only do 3-4 of the problems over a few days and then switch to a new problem type and do 3-4 of that problem type for a few days.

After students have worked on at least 2 problem types, then I would stop and do an activity that checks to see if students are beginning to be able to identify and differentiate the structure of the problems. Maybe give them three problems, 2 from one problem type and 1 from another. Ask, “Which two problems are of the same type?” or “Which one doesn’t belong?” The idea being that teachers should alternate between focused work on a particular problem type and opportunities for students to consolidate their understanding among multiple problem types.

On each slide in the problem banks, I suggest questions that the teacher could ask to help students make sense of the situation and the underlying structure. The rich discussion the class is able to have with the reveal of each new slide is just as essential as the slow reveal of information.

You may not need to ask all the questions on each slide. Also, you might come up with some of your own questions based on the discussion going on in your class. Do what makes sense to you and your goals for your students. I just wanted to provide some examples in case a teacher wasn’t quite sure how to facilitate a discussion of each slide for a given problem.

Creating these problem sets has prompted me to make a page on my blog dedicated to numberless word problems. You can find that here. I’ll post new problem sets there as they’re created. My current goal is to focus on creating problem sets for all of the CGI problem types. When that is complete, then I’d like to come back and tackle multi-step problems which are really just combinations of one or more problem types. After that I might tackle problems that incorporate irrelevant information provided in the problem itself or provided in a graph or table.

I’ve got quite a lot of work cut out for me!